JSON データ型
JavaScript Object Notation (JSON) ドキュメントを単一のカラムに保存します。
この機能はエクスペリメンタルなものであり、実稼働環境には適していません。JSON ドキュメントを扱う必要がある場合は、このガイドの使用を検討してください。
JSON 型を使用するには、allow_experimental_json_type = 1
を設定してください。
JSON
型のカラムを宣言するには、次の構文を使用します:
<column_name> JSON(max_dynamic_paths=N, max_dynamic_types=M, some.path TypeName, SKIP path.to.skip, SKIP REGEXP 'paths_regexp')
ここで:
max_dynamic_paths
は、単一のデータブロック(たとえば、MergeTree テーブルの単一データ部分)に渡ってサブカラムとして別々に保存できるパスの数を示す任意のパラメータです。この制限を超えると、他のパスはすべて単一の構造にまとめて保存されます。max_dynamic_paths
のデフォルト値は1024
です。max_dynamic_types
は、タイプDynamic
の単一パスカラム内に保存できる異なるデータ型の数を示す1
から255
の間の任意のパラメータです。この制限を超えると、新しいタイプはすべてString
型に変換されます。max_dynamic_types
のデフォルト値は32
です。some.path TypeName
は JSON 内の特定のパスに対する任意の型ヒントです。そのようなパスは常に指定された型のサブカラムとして保存されます。SKIP path.to.skip
は、JSON パース中にスキップされるべき特定のパスのための任意のヒントです。そのようなパスは JSON カラムに保存されることはありません。指定されたパスがネストされた JSON オブジェクトである場合、ネストされた全体のオブジェクトがスキップされます。SKIP REGEXP 'path_regexp'
は、JSON パース中にパスをスキップするために使用される正規表現を持つ任意のヒントです。この正規表現と一致するすべてのパスは JSON カラムに保存されることはありません。
JSON の作成
テーブルカラム定義で JSON
型を使用する:
CREATE TABLE test (json JSON) ENGINE = Memory;
INSERT INTO test VALUES ('{"a" : {"b" : 42}, "c" : [1, 2, 3]}'), ('{"f" : "Hello, World!"}'), ('{"a" : {"b" : 43, "e" : 10}, "c" : [4, 5, 6]}');
SELECT json FROM test;
┌─json────────────────────────────────────────┐
│ {"a":{"b":"42"},"c":["1","2","3"]} │
│ {"f":"Hello, World!"} │
│ {"a":{"b":"43","e":"10"},"c":["4","5","6"]} │
└─────────────────────────────────────────────┘
CREATE TABLE test (json JSON(a.b UInt32, SKIP a.e)) ENGINE = Memory;
INSERT INTO test VALUES ('{"a" : {"b" : 42}, "c" : [1, 2, 3]}'), ('{"f" : "Hello, World!"}'), ('{"a" : {"b" : 43, "e" : 10}, "c" : [4, 5, 6]}');
SELECT json FROM test;
┌─json──────────────────────────────┐
│ {"a":{"b":42},"c":[1,2,3]} │
│ {"a":{"b":0},"f":"Hello, World!"} │
│ {"a":{"b":43},"c":[4,5,6]} │
└───────────────────────────────────┘
String
からの CAST を使用する:
SELECT '{"a" : {"b" : 42},"c" : [1, 2, 3], "d" : "Hello, World!"}'::JSON AS json;
┌─json───────────────────────────────────────────┐
│ {"a":{"b":42},"c":[1,2,3],"d":"Hello, World!"} │
└────────────────────────────────────────────────┘
Tuple
からの CAST を使用する:
SELECT (tuple(42 AS b) AS a, [1, 2, 3] AS c, 'Hello, World!' AS d)::JSON AS json;
┌─json───────────────────────────────────────────┐
│ {"a":{"b":42},"c":[1,2,3],"d":"Hello, World!"} │
└────────────────────────────────────────────────┘
Map
からの CAST を使用する:
SELECT map('a', map('b', 42), 'c', [1,2,3], 'd', 'Hello, World!')::JSON AS json;
┌─json───────────────────────────────────────────┐
│ {"a":{"b":42},"c":[1,2,3],"d":"Hello, World!"} │
└────────────────────────────────────────────────┘
非推奨の Object('json')
からの CAST を使用する:
SELECT '{"a" : {"b" : 42},"c" : [1, 2, 3], "d" : "Hello, World!"}'::Object('json')::JSON AS json;
┌─json───────────────────────────────────────────┐
│ {"a":{"b":42},"c":[1,2,3],"d":"Hello, World!"} │
└────────────────────────────────────────────────┘
Tuple
/Map
/Object('json')
から JSON
への CAST は、カラムを String
カラムにシリアライズして JSON オブジェクトを含め、それを JSON
型のカラムにデシリアライズすることで実装されています。
異なる引数を持つ JSON
型間の CAST は後でサポートされます。
サブカラムとしての JSON パスの読み取り
JSON 型は、すべてのパスを別のサブカラムとして読むことをサポートします。JSON 型の宣言で要求されたパスの型が指定されていない場合、そのパスのサブカラムは常に Dynamic 型を持ちます。
例:
CREATE TABLE test (json JSON(a.b UInt32, SKIP a.e)) ENGINE = Memory;
INSERT INTO test VALUES ('{"a" : {"b" : 42, "g" : 42.42}, "c" : [1, 2, 3], "d" : "2020-01-01"}'), ('{"f" : "Hello, World!", "d" : "2020-01-02"}'), ('{"a" : {"b" : 43, "e" : 10, "g" : 43.43}, "c" : [4, 5, 6]}');
SELECT json FROM test;
┌─json──────────────────────────────────────────────────┐
│ {"a":{"b":42,"g":42.42},"c":[1,2,3],"d":"2020-01-01"} │
│ {"a":{"b":0},"d":"2020-01-02","f":"Hello, World!"} │
│ {"a":{"b":43,"g":43.43},"c":[4,5,6]} │
└───────────────────────────────────────────────────────┘
SELECT json.a.b, json.a.g, json.c, json.d FROM test;
┌─json.a.b─┬─json.a.g─┬─json.c──┬─json.d─────┐
│ 42 │ 42.42 │ [1,2,3] │ 2020-01-01 │
│ 0 │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ 2020-01-02 │
│ 43 │ 43.43 │ [4,5,6] │ ᴺᵁᴸᴸ │
└──────────┴──────────┴─────────┴────────────┘
要求されたパスがデータ内に見つからない場合、それは NULL
値で埋められます:
SELECT json.non.existing.path FROM test;
┌─json.non.existing.path─┐
│ ᴺᵁᴸᴸ │
│ ᴺᵁᴸᴸ │
│ ᴺᵁᴸᴸ │
└────────────────────────┘
返されたサブカラムのデータ型を確認してみましょう:
SELECT toTypeName(json.a.b), toTypeName(json.a.g), toTypeName(json.c), toTypeName(json.d) FROM test;
┌─toTypeName(json.a.b)─┬─toTypeName(json.a.g)─┬─toTypeName(json.c)─┬─toTypeName(json.d)─┐
│ UInt32 │ Dynamic │ Dynamic │ Dynamic │
│ UInt32 │ Dynamic │ Dynamic │ Dynamic │
│ UInt32 │ Dynamic │ Dynamic │ Dynamic │
└──────────────────────┴──────────────────────┴────────────────────┴────────────────────┘
ご覧の通り、a.b
のタイプは JSON 型宣言で指定した UInt32
であり、他のサブカラムのタイプはすべて Dynamic
です。
Dynamic
型サブカラムを特別な構文 json.some.path.:TypeName
を使って読み取ることも可能です:
select json.a.g.:Float64, dynamicType(json.a.g), json.d.:Date, dynamicType(json.d) FROM test;
┌─json.a.g.:`Float64`─┬─dynamicType(json.a.g)─┬─json.d.:`Date`─┬─dynamicType(json.d)─┐
│ 42.42 │ Float64 │ 2020-01-01 │ Date │
│ ᴺᵁᴸᴸ │ None │ 2020-01-02 │ Date │
│ 43.43 │ Float64 │ ᴺᵁᴸᴸ │ None │
└─────────────────────┴───────────────────────┴────────────────┴─────────────────────┘
Dynamic
サブカラムは任意のデータ型にキャスト可能です。この場合、Dynamic
内部の型が要求された型にキャストできない場合、例外がスローされます:
select json.a.g::UInt64 as uint FROM test;
┌─uint─┐
│ 42 │
│ 0 │
│ 43 │
└──────┘
select json.a.g::UUID as float FROM test;
Received exception:
Code: 48. DB::Exception: Conversion between numeric types and UUID is not supported. Probably the passed UUID is unquoted: while executing 'FUNCTION CAST(__table1.json.a.g :: 2, 'UUID'_String :: 1) -> CAST(__table1.json.a.g, 'UUID'_String) UUID : 0'. (NOT_IMPLEMENTED)
サブカラムとしての JSON サブオブジェクトの読み取り
JSON 型は、特殊な構文 json.^some.path
を使用して、ネストされたオブジェクトを JSON
型のサブカラムとして読むことをサポートします:
CREATE TABLE test (json JSON) ENGINE = Memory;
INSERT INTO test VALUES ('{"a" : {"b" : {"c" : 42, "g" : 42.42}}, "c" : [1, 2, 3], "d" : {"e" : {"f" : {"g" : "Hello, World", "h" : [1, 2, 3]}}}}'), ('{"f" : "Hello, World!", "d" : {"e" : {"f" : {"h" : [4, 5, 6]}}}}'), ('{"a" : {"b" : {"c" : 43, "e" : 10, "g" : 43.43}}, "c" : [4, 5, 6]}');
SELECT json FROM test;
┌─json────────────────────────────────────────────────────────────────────────────────────────┐
│ {"a":{"b":{"c":42,"g":42.42}},"c":[1,2,3],"d":{"e":{"f":{"g":"Hello, World","h":[1,2,3]}}}} │
│ {"d":{"e":{"f":{"h":[4,5,6]}}},"f":"Hello, World!"} │
│ {"a":{"b":{"c":43,"e":10,"g":43.43}},"c":[4,5,6]} │
└─────────────────────────────────────────────────────────────────────────────────────────────┘
SELECT json.^a.b, json.^d.e.f FROM test;
┌─json.^`a`.b───────────────┬─json.^`d`.e.f────────────────────┐
│ {"c":42,"g":42.42} │ {"g":"Hello, World","h":[1,2,3]} │
│ {} │ {"h":[4,5,6]} │
│ {"c":43,"e":10,"g":43.43} │ {} │
└───────────────────────────┴──────────────────────────────────┘
サブオブジェクトをサブカラムとして読み取ることは非効率的であるかもしれません。JSON データのほぼ完全なスキャンを必要とする可能性があります。
パスの型推論
JSON パース中、ClickHouse は各 JSON パスに最適なデータ型を検出しようとします。これは 入力データからの自動スキーマ推論 と同様に機能し、同じ設定によって制御されます:
- input_format_try_infer_integers
- input_format_try_infer_dates
- input_format_try_infer_datetimes
- schema_inference_make_columns_nullable
- input_format_json_try_infer_numbers_from_strings
- input_format_json_infer_incomplete_types_as_strings
- input_format_json_read_numbers_as_strings
- input_format_json_read_bools_as_strings
- input_format_json_read_bools_as_numbers
- input_format_json_read_arrays_as_strings
いくつかの例を見てみましょう:
SELECT JSONAllPathsWithTypes('{"a" : "2020-01-01", "b" : "2020-01-01 10:00:00"}'::JSON) AS paths_with_types settings input_format_try_infer_dates=1, input_format_try_infer_datetimes=1;
┌─paths_with_types─────────────────┐
│ {'a':'Date','b':'DateTime64(9)'} │
└──────────────────────────────────┘
SELECT JSONAllPathsWithTypes('{"a" : "2020-01-01", "b" : "2020-01-01 10:00:00"}'::JSON) AS paths_with_types settings input_format_try_infer_dates=0, input_format_try_infer_datetimes=0;
┌─paths_with_types────────────┐
│ {'a':'String','b':'String'} │
└─────────────────────────────┘
SELECT JSONAllPathsWithTypes('{"a" : [1, 2, 3]}'::JSON) AS paths_with_types settings schema_inference_make_columns_nullable=1;
┌─paths_with_types───────────────┐
│ {'a':'Array(Nullable(Int64))'} │
└────────────────────────────────┘
SELECT JSONAllPathsWithTypes('{"a" : [1, 2, 3]}'::JSON) AS paths_with_types settings schema_inference_make_columns_nullable=0;
┌─paths_with_types─────┐
│ {'a':'Array(Int64)'} │
└──────────────────────┘
JSON オブジェクトの配列の扱い
オブジェクトの配列を含む JSON パスは Array(JSON)
型としてパースされ、Dynamic
カラムに挿入されます。この配列を読み取るには、Dynamic
カラムからサブカラムとして抽出できます:
CREATE TABLE test (json JSON) ENGINE = Memory;
INSERT INTO test VALUES
('{"a" : {"b" : [{"c" : 42, "d" : "Hello", "f" : [[{"g" : 42.42}]], "k" : {"j" : 1000}}, {"c" : 43}, {"e" : [1, 2, 3], "d" : "My", "f" : [[{"g" : 43.43, "h" : "2020-01-01"}]], "k" : {"j" : 2000}}]}}'),
('{"a" : {"b" : [1, 2, 3]}}'),
('{"a" : {"b" : [{"c" : 44, "f" : [[{"h" : "2020-01-02"}]]}, {"e" : [4, 5, 6], "d" : "World", "f" : [[{"g" : 44.44}]], "k" : {"j" : 3000}}]}}');
SELECT json FROM test;
┌─json────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│ {"a":{"b":[{"c":"42","d":"Hello","f":[[{"g":42.42}]],"k":{"j":"1000"}},{"c":"43"},{"d":"My","e":["1","2","3"],"f":[[{"g":43.43,"h":"2020-01-01"}]],"k":{"j":"2000"}}]}} │
│ {"a":{"b":["1","2","3"]}} │
│ {"a":{"b":[{"c":"44","f":[[{"h":"2020-01-02"}]]},{"d":"World","e":["4","5","6"],"f":[[{"g":44.44}]],"k":{"j":"3000"}}]}} │
└─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
SELECT json.a.b, dynamicType(json.a.b) FROM test;
┌─json.a.b──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┬─dynamicType(json.a.b)────────────────────────────────────┐
│ ['{"c":"42","d":"Hello","f":[[{"g":42.42}]],"k":{"j":"1000"}}','{"c":"43"}','{"d":"My","e":["1","2","3"],"f":[[{"g":43.43,"h":"2020-01-01"}]],"k":{"j":"2000"}}'] │ Array(JSON(max_dynamic_types=16, max_dynamic_paths=256)) │
│ [1,2,3] │ Array(Nullable(Int64)) │
│ ['{"c":"44","f":[[{"h":"2020-01-02"}]]}','{"d":"World","e":["4","5","6"],"f":[[{"g":44.44}]],"k":{"j":"3000"}}'] │ Array(JSON(max_dynamic_types=16, max_dynamic_paths=256)) │
└───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┴──────────────────────────────────────────────────────────┘
ご覧の通り、ネストされた JSON
型の max_dynamic_types/max_dynamic_paths
パラメータはデフォルト値よりも削減されています。これは、ネストされた JSON オブジェクトの配列においてサブカラムの数が無制御に増加するのを防ぐためです。
このネストされた JSON
カラムからサブカラムを読み取ってみましょう:
SELECT json.a.b.:`Array(JSON)`.c, json.a.b.:`Array(JSON)`.f, json.a.b.:`Array(JSON)`.d FROM test;
┌─json.a.b.:`Array(JSON)`.c─┬─json.a.b.:`Array(JSON)`.f───────────────────────────────────┬─json.a.b.:`Array(JSON)`.d─┐
│ [42,43,NULL] │ [[['{"g":42.42}']],NULL,[['{"g":43.43,"h":"2020-01-01"}']]] │ ['Hello',NULL,'My'] │
│ [] │ [] │ [] │
│ [44,NULL] │ [[['{"h":"2020-01-02"}']],[['{"g":44.44}']]] │ [NULL,'World'] │
└───────────────────────────┴─────────────────────────────────────────────────────────────┴───────────────────────────┘
Array(JSON)
サブカラム名を書くのを避けるために特別な構文を使用できます:
SELECT json.a.b[].c, json.a.b[].f, json.a.b[].d FROM test;
┌─json.a.b.:`Array(JSON)`.c─┬─json.a.b.:`Array(JSON)`.f───────────────────────────────────┬─json.a.b.:`Array(JSON)`.d─┐
│ [42,43,NULL] │ [[['{"g":42.42}']],NULL,[['{"g":43.43,"h":"2020-01-01"}']]] │ ['Hello',NULL,'My'] │
│ [] │ [] │ [] │
│ [44,NULL] │ [[['{"h":"2020-01-02"}']],[['{"g":44.44}']]] │ [NULL,'World'] │
└───────────────────────────┴─────────────────────────────────────────────────────────────┴───────────────────────────┘
パスの後に続く []
の数は配列レベルを示します。json.path[][]
は json.path.:Array(Array(JSON))
に変換されます。
Array(JSON)
内のパスとその型を確認してみましょう:
SELECT DISTINCT arrayJoin(JSONAllPathsWithTypes(arrayJoin(json.a.b[]))) FROM test;
┌─arrayJoin(JSONAllPathsWithTypes(arrayJoin(json.a.b.:`Array(JSON)`)))──┐
│ ('c','Int64') │
│ ('d','String') │
│ ('f','Array(Array(JSON(max_dynamic_types=8, max_dynamic_paths=64)))') │
│ ('k.j','Int64') │
│ ('e','Array(Nullable(Int64))') │
└───────────────────────────────────────────────────────────────────────┘
Array(JSON)
カラムからサブカラムを読み取ってみましょう:
SELECT json.a.b[].c.:Int64, json.a.b[].f[][].g.:Float64, json.a.b[].f[][].h.:Date FROM test;
┌─json.a.b.:`Array(JSON)`.c.:`Int64`─┬─json.a.b.:`Array(JSON)`.f.:`Array(Array(JSON))`.g.:`Float64`─┬─json.a.b.:`Array(JSON)`.f.:`Array(Array(JSON))`.h.:`Date`─┐
│ [42,43,NULL] │ [[[42.42]],[],[[43.43]]] │ [[[NULL]],[],[['2020-01-01']]] │
│ [] │ [] │ [] │
│ [44,NULL] │ [[[NULL]],[[44.44]]] │ [[['2020-01-02']],[[NULL]]] │
└────────────────────────────────────┴──────────────────────────────────────────────────────────────┴───────────────────────────────────────────────────────────┘
ネストされた JSON
カラムからサブオブジェクトサブカラムを読み取ることもできます:
SELECT json.a.b[].^k FROM test
┌─json.a.b.:`Array(JSON)`.^`k`─────────┐
│ ['{"j":"1000"}','{}','{"j":"2000"}'] │
│ [] │
│ ['{}','{"j":"3000"}'] │
└──────────────────────────────────────┘
データからの JSON 型の読み取り
すべてのテキストフォーマット(JSONEachRow、TSV、CSV、CustomSeparated、Values など)は JSON
型の読み取りをサポートしています。
例:
SELECT json FROM format(JSONEachRow, 'json JSON(a.b.c UInt32, SKIP a.b.d, SKIP d.e, SKIP REGEXP \'b.*\')', '
{"json" : {"a" : {"b" : {"c" : 1, "d" : [0, 1]}}, "b" : "2020-01-01", "c" : 42, "d" : {"e" : {"f" : ["s1", "s2"]}, "i" : [1, 2, 3]}}}
{"json" : {"a" : {"b" : {"c" : 2, "d" : [2, 3]}}, "b" : [1, 2, 3], "c" : null, "d" : {"e" : {"g" : 43}, "i" : [4, 5, 6]}}}
{"json" : {"a" : {"b" : {"c" : 3, "d" : [4, 5]}}, "b" : {"c" : 10}, "e" : "Hello, World!"}}
{"json" : {"a" : {"b" : {"c" : 4, "d" : [6, 7]}}, "c" : 43}}
{"json" : {"a" : {"b" : {"c" : 5, "d" : [8, 9]}}, "b" : {"c" : 11, "j" : [1, 2, 3]}, "d" : {"e" : {"f" : ["s3", "s4"], "g" : 44}, "h" : "2020-02-02 10:00:00"}}}
')
┌─json──────────────────────────────────────────────────────────┐
│ {"a":{"b":{"c":1}},"c":"42","d":{"i":["1","2","3"]}} │
│ {"a":{"b":{"c":2}},"d":{"i":["4","5","6"]}} │
│ {"a":{"b":{"c":3}},"e":"Hello, World!"} │
│ {"a":{"b":{"c":4}},"c":"43"} │
│ {"a":{"b":{"c":5}},"d":{"h":"2020-02-02 10:00:00.000000000"}} │
└───────────────────────────────────────────────────────────────┘
CSV/TSV/etc のようなテキストフォーマットでは、JSON
は JSON オブジェクトを含む文字列からパースされます。
SELECT json FROM format(TSV, 'json JSON(a.b.c UInt32, SKIP a.b.d, SKIP REGEXP \'b.*\')',
'{"a" : {"b" : {"c" : 1, "d" : [0, 1]}}, "b" : "2020-01-01", "c" : 42, "d" : {"e" : {"f" : ["s1", "s2"]}, "i" : [1, 2, 3]}}
{"a" : {"b" : {"c" : 2, "d" : [2, 3]}}, "b" : [1, 2, 3], "c" : null, "d" : {"e" : {"g" : 43}, "i" : [4, 5, 6]}}
{"a" : {"b" : {"c" : 3, "d" : [4, 5]}}, "b" : {"c" : 10}, "e" : "Hello, World!"}
{"a" : {"b" : {"c" : 4, "d" : [6, 7]}}, "c" : 43}
{"a" : {"b" : {"c" : 5, "d" : [8, 9]}}, "b" : {"c" : 11, "j" : [1, 2, 3]}, "d" : {"e" : {"f" : ["s3", "s4"], "g" : 44}, "h" : "2020-02-02 10:00:00"}}')
┌─json──────────────────────────────────────────────────────────┐
│ {"a":{"b":{"c":1}},"c":"42","d":{"i":["1","2","3"]}} │
│ {"a":{"b":{"c":2}},"d":{"i":["4","5","6"]}} │
│ {"a":{"b":{"c":3}},"e":"Hello, World!"} │
│ {"a":{"b":{"c":4}},"c":"43"} │
│ {"a":{"b":{"c":5}},"d":{"h":"2020-02-02 10:00:00.000000000"}} │
└───────────────────────────────────────────────────────────────┘
JSON 内の動的パスの限界を超える
JSON
データ型は内部に有限の数のパスしか別々のサブカラムとして保存できません。デフォルトでは、この制限は 1024 です。しかし、この制限は型宣言において max_dynamic_paths
パラメータを使用して変更できます。この制限が達成されると、JSON
カラムに挿入されたすべての新しいパスは単一の共有データ構造に保存されます。この制限は、テーブルが使用不可能になるほどの膨大な数の異なるサブカラムを避けるために必要です。
異なるシナリオでこの制限が達成されたときに何が起こるか見てみましょう。
データパース中に制限に達する
JSON オブジェクトをデータからパースする間に、現在のデータブロックの制限に達すると、すべての新しいパスは共有データ構造に保存されます。内省関数 JSONDynamicPaths, JSONSharedDataPaths
を使用してそれを確認できます:
SELECT json, JSONDynamicPaths(json), JSONSharedDataPaths(json) FROM format(JSONEachRow, 'json JSON(max_dynamic_paths=3)', '
{"json" : {"a" : {"b" : 42}, "c" : [1, 2, 3]}}
{"json" : {"a" : {"b" : 43}, "d" : "2020-01-01"}}
{"json" : {"a" : {"b" : 44}, "c" : [4, 5, 6]}}
{"json" : {"a" : {"b" : 43}, "d" : "2020-01-02", "e" : "Hello", "f" : {"g" : 42.42}}}
{"json" : {"a" : {"b" : 43}, "c" : [7, 8, 9], "f" : {"g" : 43.43}, "h" : "World"}}
')
┌─json───────────────────────────────────────────────────────────┬─JSONDynamicPaths(json)─┬─JSONSharedDataPaths(json)─┐
│ {"a":{"b":"42"},"c":["1","2","3"]} │ ['a.b','c','d'] │ [] │
│ {"a":{"b":"43"},"d":"2020-01-01"} │ ['a.b','c','d'] │ [] │
│ {"a":{"b":"44"},"c":["4","5","6"]} │ ['a.b','c','d'] │ [] │
│ {"a":{"b":"43"},"d":"2020-01-02","e":"Hello","f":{"g":42.42}} │ ['a.b','c','d'] │ ['e','f.g'] │
│ {"a":{"b":"43"},"c":["7","8","9"],"f":{"g":43.43},"h":"World"} │ ['a.b','c','d'] │ ['f.g','h'] │
└────────────────────────────────────────────────────────────────┴────────────────────────┴───────────────────────────┘
ご覧のとおり、パス e
と f.g
を挿入した後、制限に達し、それらを共有データ構造に挿入しました。
MergeTree テーブルエンジンでのデータパーツのマージ中
MergeTree テーブルのいくつかのデータパーツのマージ中、生成されたデータパートの JSON
カラムは動的パスの制限に達し、サブカラムとしてすべてのパスを保存できなくなる可能性があります。この場合、ClickHouse はマージ後にサブカラムとして残るパスと共有データ構造に保存されるパスを選択します。多くの場合、ClickHouse は最も非ヌル値の多いパスを保持し、最も希少なパスを共有データ構造に移動しようとしますが、これは実装によります。
そのようなマージの例を見てみましょう。最初に、JSON
カラムを含むテーブルを作成し、動的パスの制限を 3
に設定し、 5
つの異なるパスを持つ値を挿入します:
CREATE TABLE test (id UInt64, json JSON(max_dynamic_paths=3)) engine=MergeTree ORDER BY id;
SYSTEM STOP MERGES test;
INSERT INTO test SELECT number, formatRow('JSONEachRow', number as a) FROM numbers(5);
INSERT INTO test SELECT number, formatRow('JSONEachRow', number as b) FROM numbers(4);
INSERT INTO test SELECT number, formatRow('JSONEachRow', number as c) FROM numbers(3);
INSERT INTO test SELECT number, formatRow('JSONEachRow', number as d) FROM numbers(2);
INSERT INTO test SELECT number, formatRow('JSONEachRow', number as e) FROM numbers(1);
各挿入は JSON
カラムを含む単一のパスを持つ別々のデータパートを作成します:
SELECT count(), JSONDynamicPaths(json) AS dynamic_paths, JSONSharedDataPaths(json) AS shared_data_paths, _part FROM test GROUP BY _part, dynamic_paths, shared_data_paths ORDER BY _part ASC
┌─count()─┬─dynamic_paths─┬─shared_data_paths─┬─_part─────┐
│ 5 │ ['a'] │ [] │ all_1_1_0 │
│ 4 │ ['b'] │ [] │ all_2_2_0 │
│ 3 │ ['c'] │ [] │ all_3_3_0 │
│ 2 │ ['d'] │ [] │ all_4_4_0 │
│ 1 │ ['e'] │ [] │ all_5_5_0 │
└─────────┴───────────────┴───────────────────┴───────────┘
さて、すべてのパートを1つにマージして、何が起こるか見てみましょう:
SYSTEM START MERGES test;
OPTIMIZE TABLE test FINAL;
SELECT count(), dynamicType(d), _part FROM test GROUP BY _part, dynamicType(d) ORDER BY _part;
┌─count()─┬─dynamic_paths─┬─shared_data_paths─┬─_part─────┐
│ 1 │ ['a','b','c'] │ ['e'] │ all_1_5_2 │
│ 2 │ ['a','b','c'] │ ['d'] │ all_1_5_2 │
│ 12 │ ['a','b','c'] │ [] │ all_1_5_2 │
└─────────┴───────────────┴───────────────────┘
ご覧のとおり、ClickHouse は最も頻繁に現れるパス a
、b
、c
を保持し、パス e
と d
を共有データ構造に移動しました。
内省関数
JSON カラムの内容を調べるのに役立ついくつかの関数があります:JSONAllPaths、JSONAllPathsWithTypes、JSONDynamicPaths、JSONDynamicPathsWithTypes、JSONSharedDataPaths、JSONSharedDataPathsWithTypes、distinctDynamicTypes、distinctJSONPaths and distinctJSONPathsAndTypes
例
2020-01-01
日付の GH Archive データセットの内容を調査してみましょう:
SELECT arrayJoin(distinctJSONPaths(json)) FROM s3('s3://clickhouse-public-datasets/gharchive/original/2020-01-01-*.json.gz', JSONAsObject)
┌─arrayJoin(distinctJSONPaths(json))─────────────────────────┐
│ actor.avatar_url │
│ actor.display_login │
│ actor.gravatar_id │
│ actor.id │
│ actor.login │
│ actor.url │
│ created_at │
│ id │
│ org.avatar_url │
│ org.gravatar_id │
│ org.id │
│ org.login │
│ org.url │
│ payload.action │
│ payload.before │
│ payload.comment._links.html.href │
│ payload.comment._links.pull_request.href │
│ payload.comment._links.self.href │
│ payload.comment.author_association │
│ payload.comment.body │
│ payload.comment.commit_id │
│ payload.comment.created_at │
│ payload.comment.diff_hunk │
│ payload.comment.html_url │
│ payload.comment.id │
│ payload.comment.in_reply_to_id │
│ payload.comment.issue_url │
│ payload.comment.line │
│ payload.comment.node_id │
│ payload.comment.original_commit_id │
│ payload.comment.original_position │
│ payload.comment.path │
│ payload.comment.position │
│ payload.comment.pull_request_review_id │
...
│ payload.release.node_id │
│ payload.release.prerelease │
│ payload.release.published_at │
│ payload.release.tag_name │
│ payload.release.tarball_url │
│ payload.release.target_commitish │
│ payload.release.upload_url │
│ payload.release.url │
│ payload.release.zipball_url │
│ payload.size │
│ public │
│ repo.id │
│ repo.name │
│ repo.url │
│ type │
└─arrayJoin(distinctJSONPaths(json))─────────────────────────┘
SELECT arrayJoin(distinctJSONPathsAndTypes(json)) FROM s3('s3://clickhouse-public-datasets/gharchive/original/2020-01-01-*.json.gz', JSONAsObject) SETTINGS date_time_input_format='best_effort'
┌─arrayJoin(distinctJSONPathsAndTypes(json))──────────────────┐
│ ('actor.avatar_url',['String']) │
│ ('actor.display_login',['String']) │
│ ('actor.gravatar_id',['String']) │
│ ('actor.id',['Int64']) │
│ ('actor.login',['String']) │
│ ('actor.url',['String']) │
│ ('created_at',['DateTime']) │
│ ('id',['String']) │
│ ('org.avatar_url',['String']) │
│ ('org.gravatar_id',['String']) │
│ ('org.id',['Int64']) │
│ ('org.login',['String']) │
│ ('org.url',['String']) │
│ ('payload.action',['String']) │
│ ('payload.before',['String']) │
│ ('payload.comment._links.html.href',['String']) │
│ ('payload.comment._links.pull_request.href',['String']) │
│ ('payload.comment._links.self.href',['String']) │
│ ('payload.comment.author_association',['String']) │
│ ('payload.comment.body',['String']) │
│ ('payload.comment.commit_id',['String']) │
│ ('payload.comment.created_at',['DateTime']) │
│ ('payload.comment.diff_hunk',['String']) │
│ ('payload.comment.html_url',['String']) │
│ ('payload.comment.id',['Int64']) │
│ ('payload.comment.in_reply_to_id',['Int64']) │
│ ('payload.comment.issue_url',['String']) │
│ ('payload.comment.line',['Int64']) │
│ ('payload.comment.node_id',['String']) │
│ ('payload.comment.original_commit_id',['String']) │
│ ('payload.comment.original_position',['Int64']) │
│ ('payload.comment.path',['String']) │
│ ('payload.comment.position',['Int64']) │
│ ('payload.comment.pull_request_review_id',['Int64']) │
...
│ ('payload.release.node_id',['String']) │
│ ('payload.release.prerelease',['Bool']) │
│ ('payload.release.published_at',['DateTime']) │
│ ('payload.release.tag_name',['String']) │
│ ('payload.release.tarball_url',['String']) │
│ ('payload.release.target_commitish',['String']) │
│ ('payload.release.upload_url',['String']) │
│ ('payload.release.url',['String']) │
│ ('payload.release.zipball_url',['String']) │
│ ('payload.size',['Int64']) │
│ ('public',['Bool']) │
│ ('repo.id',['Int64']) │
│ ('repo.name',['String']) │
│ ('repo.url',['String']) │
│ ('type',['String']) │
└─arrayJoin(distinctJSONPathsAndTypes(json))──────────────────┘
ALTER MODIFY COLUMN を JSON 型に
既存のテーブルを変更し、カラムの型を新しい JSON
型に変更することができます。現在のところ、サポートされているのは String
型からの変更のみです。
例
CREATE TABLE test (json String) ENGINE=MergeTree ORDeR BY tuple();
INSERT INTO test VALUES ('{"a" : 42}'), ('{"a" : 43, "b" : "Hello"}'), ('{"a" : 44, "b" : [1, 2, 3]}')), ('{"c" : "2020-01-01"}');
ALTER TABLE test MODIFY COLUMN json JSON;
SELECT json, json.a, json.b, json.c FROM test;
┌─json─────────────────────────┬─json.a─┬─json.b──┬─json.c─────┐
│ {"a":"42"} │ 42 │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │
│ {"a":"43","b":"Hello"} │ 43 │ Hello │ ᴺᵁᴸᴸ │
│ {"a":"44","b":["1","2","3"]} │ 44 │ [1,2,3] │ ᴺᵁᴸᴸ │
│ {"c":"2020-01-01"} │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ 2020-01-01 │
└──────────────────────────────┴────────┴─────────┴────────────┘
JSON 型のより良い使用のためのヒント
JSON
カラムを作成してデータをロードする前に、次のヒントを検討してください:
- データを調査し、可能な限り多くのパスヒントと型を指定してください。それにより、ストレージと読み取りが非常に効率的になります。
- 必要なパスと不要なパスを考え、必要のないパスを SKIP セクションや SKIP REGEXP に指定してください。それにより、ストレージの効率が向上します。
max_dynamic_paths
パラメータを非常に高い値に設定しないでください。それはストレージと読み取りを効率的でなくする可能性があります。